Bibliography

  • RECENT PUBLICATIONS

Please note that a few publications are from 2021 or even earlier, as they were not included previously in the Silurian Times. In addition, some papers are dealing with Ordovician and Devonian topics by members of ISSS. There are also a few papers in the list that are in press or online.

Álvaro, J.J., Ghobadi Pour, M., Sánchez-García, T., Kebria-ee Zadeh, M.-R., Hairapetian, V. and Popov, L.E. 2022. Stratigraphic and volcanic signatures of Miaolingian-Late Ordovician rift pulses in the Alborz Mountains, northern Iran. Journal of Asian Earth Sciences, 233, 105240, https://doi.org/10.1016/j.jseaes.2022.105240.

Andreev, P.S., Sansom, I.J., et al. 2022a. Spiny chondrichthyan from the lower Silurian of South China. Nature, 609, 969–974, https://doi.org/10.1038/s41586-022-05233-8.

Andreev, P.S., Sansom, I.J., et al. 2022b. The oldest gnathostome teeth. Nature, 609, 964–968, https://doi.org/10.1038/s41586-022-05166-2.

Baarli, B.G. 2022. The new brachiopod genus Eiratrypa and the genus Clintonella from the Lower Silurian (Llandovery) of Baltica. Norwegian Journal of Geology, 102, 1–8, https://doi.org/10.17850/njg102-1-3.

Baarli, B.G., Huang, B. and Maroja, L.S. 2022. Phylogeny of the Ordovician and Silurian members of the order Atrypida. Journal of Systematic Palaeontology, 20, 2145920, https://doi.org/10.1080/14772019.2022.2145920.

Barrick, J.E. and Kleffner, M.A. 2022. Pridoli (Silurian) to Lochkovian (Early Devonian) conodonts and the Silurian-Devonian boundary interval in the Decatur Limestone and Ross Formation in the Western Valley of Tennessee, USA. Stratigraphy, 19, 1-25. https://www.micropress.org/microaccess/check/2271.

Bates, D.E.B., Kirk, N.H. and Kozłowska, A. 2023. Morphology and reconstruction of the retiolitines: Silurian graptolites of the Paraplectograptus lineage (Graptolithina). Comptes Rendus Palevol, 22, 45–57, https://doi.org/10.5852/cr-palevol2023v22a4.

Bek, J., Štorch, P., Tonarová, P. and Libertín, M. 2022. Early Silurian (mid-Sheinwoodian) palynomorphs from the Loděnice-Špičatý vrch, Prague Basin, Czech Republic. Bulletin of Geosciences, 97, 385–396, https://doi.org/10.3140/bull.geosci.1831.

Borisenko, T., Vinn, O., Grytsenko, V., Francovschi, I. and Zaika, Y. 2022. Symbiosis in corals and stromatoporoids from the Silurian of Baltica. Palaeontologia Electronica, 25, 1–19, https://doi.org/10.26879/1206.

Burrow, C.J., Murphy, M.A. and Turner, S. In press. Late Silurian to earliest Devonian vertebrate biostratigraphy of the Birch Creek II section, Roberts Mountains, Nevada, U.S.A. Paleobios.

Capel, E., Cleal, C.J., Xue, J., Monnet, C., Servais, T. and Cascales-Miñana, B. 2022. The Silurian–Devonian terrestrial revolution: Diversity patterns and sampling bias of the vascular plant macrofossil record. Earth-Science Reviews, 231, 104085, https://doi.org/10.1016/j.earscirev.2022.104085.

Capel, E., Cleal, C.J., Servais, T. and Cascales-Miñana, B. 2023. New insights into Silurian–Devonian palaeophytogeography. Palaeogeography, Palaeoclimatology, Palaeoecology, 613, 111393, https://doi.org/10.1016/j.palaeo.2023.111393.

Chen, D., Huang, B. and Rong, J. 2023a. Distribution of the Silurian brachiopod genus Atrypoidea, and its first report in the Chejiaba Formation (upper Ludlow), Guangyuan, South China. Journal of Paleontology, 97, 76–89, https://doi.org/10.1017/jpa.2022.71.

Chen, D., Huang, B. and Candela, Y. 2023b. Revision of the Llandovery (lower Silurian) trimerellide brachiopod Yidurella in South China. Palaeoworld, In Press, Corrected Proof, https://doi.org/10.1016/j.palwor.2023.01.001.

Chen, X., Zhang, Y.D., Li, Y. and Fan, J.X. 2022a. Geological setting of the Ordovician and Silurian Strata of the Yangtze Platform. In: Chen, X., Wang, H. and Goldman, D. (eds) Latest Ordovician to Early Silurian Shale Gas Strata of the Yangtze Region, China. Hangzhou: Zhejiang University Press. 11-24. ISBN 978-7-308-22226-6.

Chen, X., Wang, H. and Goldman, D. (eds). 2022b. Latest Ordovician to Early Silurian Shale Gas Strata of the Yangtze Region, China. Zhejiang University Press and Springer, Hangzhou, 292 pp. ISBN 978-7-308-22226-6.

Chen, X., Yu, S., Fang, X., Li, W., Muir, L. and Zhang, Y. 2023c. New Silurian graptolite material from Nyalam, southern Xizang (Tibet), China. Acta Palaeontologica Sinica, 61, 525–540, https://doi.org/10.19800/j.cnki.aps.2021059.

Coe, A.L. and Ray, D.C. 2022. Chapter 8. Sequence stratigraphy: using changes in relative sea-level and sediment supply to divide, correlate and understand the stratigraphical record. In: Coe, A. L. (ed.) Deciphering Earth’s History: The Practice of Stratigraphy. GSL Geoscience in Practice, 141-160. https://www.geolsoc.org.uk/GIP001.

Corriga, M.G., Floris, M. and Corradini, C. 2022. The Silurian/Devonian sequence at Perda s’Altari (SW Sardinia, Italy). Bollettino della Società Paleontologica Italiana, 61, 71–86, https://doi.org/10.4435/BSPI.2022.02.

Ferretti, A., Corriga, M.G., Slavík, L. and Corradini, C. 2022. Running across the Silurian/Devonian Boundary along Northern Gondwana: A Conodont Perspective. Geosciences, 12, 1–26, https://doi.org/10.3390/geosciences12010043.

Ghobadi Pour, M., Popov, L.E., Álvaro, J.J., Amini, A., Hairapetian, V. and Jahangir, H. 2022. Ordovician of North Iran: New lithostratigraphy, palaeogeography and biogeographical links with South China and the Mediterranean peri-Gondwana margin. Bulletin of Geosciences, 97, 465–538, https://doi.org/10.3140/bull.geosci.1830.

Gómez, J.C., Peralta, S.H. and Beresi, M.S. 2022. A centimeter-scale analysis of the Hirnantian basal strata of the La Chilca Formation (Hirnantian-Early Wenlockian), Central Precordillera, San Juan Province, Argentina: Lithofacies change and paleoenvironmental significance. Serie Correlación Geológica, 38, 27–48, https://doi.org/10.5281/zenodo.7189789.

Grendaitė, M., Michelevičius, D. and Radzevičius, S. 2023. Insights into the structural geology and sedimentary succession of the Baltic Basin, Western Lithuania. Marine and Petroleum Geology, 147, 106009, https://doi.org/10.1016/j.marpetgeo.2022.106009.

Guo, W., Li, Q.J., Zhao, M., Liang, P.P., Wang, N. and Li, Y. 2022. Palaeoecology of the Silurian Shiniulan Formation at the coastal Hetaowan section, Renhuai of northern Guizhou (in Chinese with english abstract). Acta Micropalaeontologica Sinica, 39, 307–315.

Hints, L., Pärnaste, H., Männik, P., Reich, M. and Rozhnov, S. 2022. Development of faunal diversity during the late Llandovery–early Wenlock in the easternmost part of the Baltic Palaeobasin – implications for the Ireviken Event. Estonian Journal of Earth Sciences, 71, 89–110, https://doi.org/10.3176/earth.2022.07.

Jeon, J., Li, Y., et al. 2022a. Nearshore warm-water biota development in the aftermath of the Late Ordovician Mass Extinction in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 603, 111182, https://doi.org/10.1016/j.palaeo.2022.111182.

Jeon, J., Vinn, O., Liang, K., Zapalski, M.K., Toom, U. and Kershaw, S. 2022b. Stromatoporoid-coral/tubeworm intergrowths in the lowermost Silurian Varbola Formation of Estonia: first evidence of competitive interaction. Lethaia, 55, 1–13, https://doi.org/10.18261/let.55.2.4.

Johnson, M.E. and Baarli, B.G. 2023. Spat fall and mature growth of large-shell brachiopods (Stricklandia lens lens) from the Solvik Formation (lower Silurian) at Sandvika in the Oslo Region of southern Norway. Norwegian Journal of Geology, 103, 1-37 (Accepted manuscript), https://doi.org/10.17850/njg103-1-5.

Kaljo, D., Martma, T., Märss, T., Nestor, V.-K. and Viira, V. 2022. A bio- and chemostratigraphic search for the Mid-Ludfordian Carbon Isotope Excursion interval in the Ludlow of the Ohesaare core, Estonia. Estonian Journal of Earth Sciences, 71, 44–60, https://doi.org/10.3176/earth.2022.04.

Kershaw, S. 2022a. Lophiostroma schmidtii; the most enigmatic Palaeozoic stromatoporoid. An atlas of images (Part 1). https://figshare.com/articles/figure/Lophiostroma_schmidtii_NICHOLSON_THE_MOST_ENIGMATIC_PALAEOZOIC_STROMATOPOROID_TAXONOMY_GROWTH_DIAGENESIS/19617483?file=34846665.

Kershaw, S. 2022b. Lophiostroma schmidtii; the most enigmatic Palaeozoic stromatoporoid. An atlas of images (Part 2). https://figshare.com/articles/figure/Lophiostroma_schmidtii_NICHOLSON_THE_MOST_ENIGMATIC_PALAEOZOIC_STROMATOPOROID_TAXONOMY_GROWTH_DIAGENESIS/19617483?file=34846671.

Kershaw, S. 2022c. Palaeozoic stromatoporoids and their symbionts: an atlas of images and ideas from the Silurian of Gotland, Sweden. https://doi.org/10.6084/m9.figshare.17938007, 1–100.

Kiipli, T. 2022a. Discussion on Palaeozoic carbon isotope excursions: example from the Ludfordian section of the Baltic Basin, gas hydrate model for origin, relations to the oceanic turnovers, plate tectonics and astronomical cycles. ResearchGate, Preprint, 1–17, https://doi.org/10.13140/RG.2.2.33064.85764.

Kiipli, T. 2022b. Tectono-magmatic interpretation of the Ordovician and Silurian volcanism in the eastern region of the Iapetus Palaeo-Ocean: Review from the volcanic record in the Baltic sedimentary basin. ResearchGate, Preprint, 1–21, https://doi.org/10.13140/RG.2.2.24656.79368.

Kiipli, T. 2022c. Volcanic record in late Telychian (Silurian) section of the Baltic Basin: search of sources in Scandinavian Caledonides and modeling of ash clouds. ResearchGate, Preprint, 1–13, https://doi.org/10.13140/RG.2.2.33690.93120.

Koch, M.M., Faehnrich, K., McClelland, W.C., Crowley, J.L., Melchin, M.J., Beranek, L.P. and Strauss, J.V. 2022. Age and significance of the Fire Bay assemblage: an Ordovician arc fragment within the Clements Markham belt, northwestern Ellesmere Island, Canada. Canadian Journal of Earth Sciences, 59, 639–659, https://doi.org/10.1139/cjes-2021-0129.

Kroeck, D.M., Mullins, G., Zacaï, A., Monnet, C. and Servais, T. 2022. A review of Paleozoic phytoplankton biodiversity: Driver for major evolutionary events? Earth-Science Reviews, 232, 104113, https://doi.org/10.1016/j.earscirev.2022.104113.

LoDuca, S.T., Meacher, M., Pepper, M., Brett, K. and Isotalo, P.A. 2022. Earltonella fredricksi n. gen n. sp. and Thalassocystis striata (Chlorophyta, Bryopsidales) from the Silurian (Llandoverian) of the Timiskaming outlier, Ontario, Canada. Journal of Paleontology, 1–17, https://doi.org/10.1017/jpa.2022.86.

Manda, Š., Slavík, L., Štorch, P., Tasáryová, Z. and Čáp, P. 2023. Division of Přídolí Series in Central Bohemia: graptolite and conodont biostratigraphy, faunal changes, and geochemical record. Newsletters on Stratigraphy, 56, 89–123, https://doi.org/10.1127/nos/2022/0695.

Mao Y.Y., Li Q.J., Deng X.J., Li Y. and Shi Z.H. 2022. Paleobiogeography of the Silurian Petalocrinidae fauna on the Upper Yangtze epicontinental sea (in Chinese with english abstract). Chinese Journal of Geology, 57, 1130–1143, https://doi.org/10.12017/dzkx.2022.064.

McCauley, C.M., Nestell, G.P. and Nestell, M.K. 2022. A new technique for observing the internal morphology of foraminiferal tests in transmitted light. Micropaleontology, 68, 587–599, https://doi.org/10.47894/mpal.68.6.04.

Meidla, T., Ainsaar, L., Hints, O. and Radzevičius, S. 2023. Ordovician of the Eastern Baltic palaeobasin and the Tornquist Sea margin of Baltica. Geological Society, London, Special Publications, 532, SP532-2022–2141, https://doi.org/10.1144/SP532-2022-141.

Melchin, M.J., Davies, J.R., et al. 2023. Integrated stratigraphic study of the Rhuddanian-Aeronian (Llandovery, Silurian) boundary succession at Rheidol Gorge, Wales: A proposed GSSP candidate for the Base of the Aeronian Stage. Lethaia, 56, 1–23, https://doi.org/10.18261/let.56.1.8.

Mills, B.J.W., Krause, A.J., Jarvis, I. and Cramer, B.D. 2023. Evolution of Atmospheric O2 Through the Phanerozoic, Revisited. Annual Review of Earth and Planetary Sciences, 51, 253–276, https://doi.org/10.1146/annurev-earth-032320-095425.

Muir, L.A., Zhang, Y., Botting, J.P. and Ma, X. 2021. Convergent evolution in planktic graptolites: independent origin of the dicranograptid morphology in the Hirnantian (latest Ordovician). Alcheringa: An Australasian Journal of Palaeontology, 45, 395–400, https://doi.org/10.1080/03115518.2021.2003430.

Neuweiler, F., Kershaw, S., Boulvain, F., Matysik, M., Sendino, C., McMenamin, M. and Munnecke, A. 2022. Keratose sponges in ancient carbonates – A problem of interpretation. Sedimentology, https://doi.org/10.1111/sed.13059.

Oborny, S.C., Cramer, B.D., Brett, C.E. and Bancroft, A.M. 2022. Chronostratigraphic correlation of the Upper Silurian Salina Group for the Michigan and Appalachian Basins through coupled (δ13Ccarb) chemostratigraphy and subsurface geophysical analyses. Geosphere, 18, 1910–1925, https://doi.org/10.1130/GES02515.1.

Radzevičius, S., Stankevič, R., et al. 2023. Integrated stratigraphy of the Ludlow (Silurian) of the Baubliai-2 core (western Lithuania) and the record of δ18O and δ13C climatically driven co-variability. Newsletters on Stratigraphy, 56, 75–88, https://doi.org/10.1127/nos/2022/0712.

Ray, D. and Dlubak, M. 2022. Timescales — Set in Stone? A Review of the Geologic Time Scale 2020. Subsurface Insights, February, 4–9, https://www.researchgate.net/publication/358661601Timescales-Set_in_Stone_A_Review_of_the_Geologic_Time_Scale_2020.

Rinkevičiūtė, S., Stankevič, R., Radzevičius, S., Meidla, T., Garbaras, A. and Spiridonov, A. 2021. Dynamics of ostracod communities throughout the Mulde/lundgreni event: contrasting patterns of species richness and palaeocommunity compositional change. Journal of the Geological Society, 179, jgs2021-039, https://doi.org/10.1144/jgs2021-039.

Rosenbaum, M.S. 2022. Chapter 1: Geology and landform: sedimentation, glaciation and river erosion. In: Wall, T. and Wall, G. (eds) Downton Gorge: The Matchless Valley Geology and Landscape. 502. ISBN 978-1-9160436-2–6.

Shan, X., Zhao, W. and Gai, Z. 2022a. A New Species of Jiangxialepis (Galeaspida) from the Lower Telychian (Silurian) of Jiangxi and its Biostratigraphic Significance. Acta Geologica Sinica - English Edition, https://doi.org/10.1111/1755-6724.15009.

Shan, X., Zhao, W., Lin, X., Chen, Y., Li, Q., Zhu, M. and Gai, Z. 2022b. The correlations of the lower red beds of early Telychian (Llandovery, Silurian) in China from the palaeoichthyological evidence (in Chinese with English abstract). Journal of Stratigraphy, 46, 138–153, https://doi.org/10.19839/j.cnki.dcxzz.2022.0011.

Shan, X., Gai, Z., Lin, X., Chen, Y., Zhu, M. and Zhao, W. 2022c. The oldest eugaleaspiform fishes from the Silurian red beds in Jiangxi, South China and their stratigraphic significance. Journal of Asian Earth Sciences, 229, 105187, https://doi.org/10.1016/j.jseaes.2022.105187.

Shohel, M., Ray, K.K., Tivanski, A.V., McAdams, N.E.B., Bancroft, A.M., Cramer, B.D. and Forbes, T.Z. 2022. Nanomechanical variability in the early evolution of vertebrate dentition. Scientific Reports, 12, 10203, https://doi.org/10.1038/s41598-022-14157-2.

Silvério, G., Pereira, S., Moreira, N., Piçarra, J.M. and Machado, G. 2021. Tentaculites and cornulitids of Portugal: a bibliographic and museological review. Comunicações Geológicas, 108, 157–162, https://doi.org/10.34637/83v6-xw38.

Siveter, D.J. 2022. British Silurian Beyrichiacea (ostracoda). Part 2. Monographs of the Palaeontographical Society, 176, 77–157, https://doi.org/10.1080/02693445.2022.2143626.

Sproson, A.D., Pogge von Strandmann, P.A.E., et al. 2022. Osmium and lithium isotope evidence for weathering feedbacks linked to orbitally paced organic carbon burial and Silurian glaciations. Earth and Planetary Science Letters, 577, 117260, https://doi.org/10.1016/j.epsl.2021.117260.

Stolfus, B.M., Allman, L.J., et al. 2023. Expansion of Reducing Marine Environments During the Ireviken Biogeochemical Event: Evidence From the Altajme Core, Gotland, Sweden. Paleoceanography and Paleoclimatology, 38, e2022PA004484, https://doi.org/10.1029/2022PA004484.

Štorch, P. 2022. Graptolite biostratigraphy and biodiversity dynamics in the Silurian System of the Prague Synform (Barrandian area, Czech Republic). Bulletin of Geosciences, 98, 1–78, https://doi.org/10.3140/bull.geosci.1862.

Sun, Z., Štorch, P., Fan, J., Melchin, M.J. and Suyarkova, A. 2022. Lower Aeronian (Llandovery, Silurian) graptolites of the genera Rastrites and Stavrites: systematics, biostratigraphy and palaeobiogeography. Papers in Palaeontology, 8, 1–29, https://doi.org/10.1002/spp2.1429.

Thomka, J.R. and Brett, C.E. 2021. Parasitism of Paleozoic Crinoids and Related Stalked Echinoderms: Paleopathology, Ichnology, Coevolution, and Evolutionary Paleoecology. In: De Baets, K. and Huntley, J. W. (eds) The Evolution and Fossil Record of Parasitism: Coevolution and Paleoparasitological Techniques. Topics in Geobiology, 289–316., https://doi.org/10.1007/978-3-030-52233-9_9.

Thomka, J.R., Vinn, O. and Toom, U. 2022. Site-selectivity of symbiotic (parasitic?) pits in crinoid column material from the middle Silurian (Wenlock: Sheinwoodian) of western Estonia. Ichnos, 29, 71–75, https://doi.org/10.1080/10420940.2022.2047038.

Turner, S. 2022. To our Honoured colleagues, Drs Tiiu Märss and Philippe Janvier Parades Allaga, M. V., Manzanares, E., Mondejar Fernandez, J., Ros-Franch, S., Botella, H. and Martinez-Perez, C. (eds). Proceedings 16th International Symposium on Early and Lower Vertebrates, June 20-24, Valencia, Spain, Ichthyolith Issues Special Publication, 15, 1. http://iselv.uv.es/wp-content/uploads/2022/06/Abstract-Book-16ISELV_web.pdf.

Vinn, O. 2022. Phosphatic Biomineralization in Scyphozoa (Cnidaria): A Review. Minerals, 12, 1316, https://doi.org/10.3390/min12101316.

Vinn, O., Wilson, M.A., Madison, A., Kazantseva, E. and Toom, U. 2022. First symbiotic association between hederelloids and rugose corals (latest Silurian of Saaremaa, Estonia). Palaios, 37, 368–373, https://doi.org/10.2110/palo.2022.005.

Wang, C.S., Wang, X.F., Wei, K., Zeng, X.W., Wang, J.P. and Li, Y.G. 2022a. The Silurian sea level changes and sequence stratigraphic division and correlation in western Hunan and Hubei Provinces. South China Geology, 38, 67–78, https://doi.org/10.3969/j.issn.2097-0013.2022.01.005.

Wang, G.X., Wei, X., Cui, Y.N., Zhang, X.L., Wang, Q. and Zhan, R.B. 2022b. Hirnantian (latest Ordovician) stratigraphy and palaeogeography of the western Yangtze Platform, South China (in Chinese with English abstract). Geological Journal of China Universities, https://doi.org/10.16108/j.issn1006-7493.2022051.

Wang, Q. and Huang, B. 2022. An ontogenetic study of Eospirigerina putilla (Brachiopoda) surviving the Late Ordovician mass extinction. Palaeoworld, In Press, Corrected Proof, https://doi.org/10.1016/j.palwor.2022.06.001.

Whittingham, M., Spiridonov, A. and Radzevičius, S. 2022. Dynamic ecophenotypy in the Silurian Monograptidae (Graptolithina). Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 113, 29–38, https://doi.org/10.1017/S1755691021000402.

Williams, M., Komatsu, T., et al. 2023. Ostracods from the Upper Silurian Si Ka Formation, Northern Vietnam, and Their Paleobiogeographical Significance. Paleontological Research, 27, 261–276, https://doi.org/10.2517/PR210032.

Yan, G., Wu, R., Huang, B., Percival, I.G., Gong, F., Wei, X. and Li, L. 2022a. Llandovery (Silurian) conodont biofacies on the Yangtze Platform of South China and their palaeoenvironmental implications. Journal of Asian Earth Sciences, 225, 105044, https://doi.org/10.1016/j.jseaes.2021.105044.

Yan, G., Lehnert, O., et al. 2022b. The record of early Silurian climate changes from South China and Baltica based on integrated conodont biostratigraphy and isotope chemostratigraphy. Palaeogeography, Palaeoclimatology, Palaeoecology, 606, 111245, https://doi.org/10.1016/j.palaeo.2022.111245.

Želvys, T., Brazauskas, A., Spiridonov, A., Balčiūnas, M., Garbaras, A. and Radzevičius, S. 2022. Stable carbon isotope stratigraphy of the Silurian in the Jočionys-299 borehole (eastern Lithuania). Estonian Journal of Earth Sciences, 71, 127, https://doi.org/10.3176/earth.2022.09.

Zhan, R., Zhang, Y., Wang, G., Melchin, M. and Štorch, P. 2022. Silurian GSSPs (in Chinese). Zhan, R. and Zhang, Y. (eds). In: Stratigraphical Golden Spikes - Critical Points in the Evolution of the Earth. Nanjing, Jiangsu Phoenix Publishing House of Science and Technology, 708 pp, 163–222.

Zhang, J., Li, C. and Zhang, Y. 2022. Geological evidences and mechanisms for oceanic anoxic events during the Early Paleozoic. Chinese Science Bulletin, 67, 1644–1659, https://doi.org/10.1360/TB-2021-0535.

Zhang, S. and Barnes, C.R. 2022. Late Ordovician (Katian) conodont community analysis and anoxic shallow water origin of organic-rich black shales, Red Head Rapids Formation, Southampton Island, Canadian Arctic. Palaeogeography, Palaeoclimatology, Palaeoecology, 592, 110896, https://doi.org/10.1016/j.palaeo.2022.110896.

Zhu, M., Zhu, Y., Gai, Z., Zhao, W., Qiao, T. and Lu, J. 2022a. How did jawed vertebrates originate and rise? (in Chinese). Earth Science, 47, 3818–3820, https://doi.org/10.3799/dqkx.2022.823.

Zhu, Y., Li, Q., et al. 2022b. The oldest complete jawed vertebrates from the early Silurian of China. Nature, 609, 954–958, https://doi.org/10.1038/s41586-022-05136-8.